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ABSTRACT
Subgraph-based graph representation learning (SGRL) has been
recently proposed to deal with some fundamental challenges en-
countered by canonical graph neural networks (GNNs), and has
demonstrated advantages in many important data science applica-
tions such as link, relation and motif prediction. However, current
SGRL approaches su�er from scalability issues since they require ex-
tracting subgraphs for each training or test query. Recent solutions
that scale up canonical GNNs may not apply to SGRL. Here, we pro-
pose a novel framework SUREL for scalable SGRL by co-designing
the learning algorithm and its system support. SUREL adopts walk-
based decomposition of subgraphs and reuses the walks to form
subgraphs, which substantially reduces the redundancy of subgraph
extraction and supports parallel computation. Experiments over
six homogeneous, heterogeneous and higher-order graphs with
millions of nodes and edges demonstrate the e�ectiveness and scal-
ability of SUREL. In particular, compared to SGRL baselines, SUREL
achieves 10! speed-up with comparable or even better prediction
performance; while compared to canonical GNNs, SUREL achieves
50% prediction accuracy improvement.
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1 INTRODUCTION
Graph-structured data is prevalent to model relations and interac-
tions between elements in real-world applications [20]. Graph rep-
resentation learning (GRL) aims to learn representations of graph-
structured data and has recently become a hot research topic [12].
Previous works on GRL focus on either model design or system de-
sign while very few works jointly consider them. Works on model
design tend to propose more expressive, generalizable and robust
GRLmodels while paying less attention to their deployment [28, 37].
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Hence, many theoretically powerful models can hardly apply to
large real-world graphs. On the other hand, research on system
design focuses on system-level techniques for better model devel-
opment, such as graph partitioning [7], sub-sampling [13, 49] and
pipelining [17, 36, 50, 54]. However, they only consider basic GRL
models, in particular graph neural network (GNN) models, yet often
overlook their modeling limitations to solve practical GRL tasks.

Canonical GNNs [13, 19] share a common framework: each node
is associated with a vector representation that gets iteratively up-
dated by aggregating the representations from its neighboring
nodes via graph convolution layers. The �nal prediction is made
by combining the representations of nodes of interest. Although
recent successes in system research have greatly pumped up the ef-
�ciency [9, 40], the GNN framework intrinsically su�ers from three
modeling limitations. First, information may be over-squashed into
a single node representation that results in subpar performance
when multiple tasks are associated, e.g. to predict multiple rela-
tions or links attached to the same node [1, 8]. Second, canonical
GNNs cannot capture intra-node distance information due to lim-
ited expressive power [21, 38], and thus fail to make predictions
over a set of nodes (See Fig. 1a), such as substructure counting [3, 6]
and higher-order pattern prediction [33, 53]. Third, the depth of
GNNs is entangled with the range of the receptive �eld. For more
non-linearity, using deeper GNNs comes with a larger but possibly
unnecessary receptive �eld, which poses the risk of contaminating
the representations with irrelevant information [15, 48].

Recently, subgraph-based GRL (SGRL) has emerged as a new
trend and has shown superior performance in tasks such as link
prediction [51, 53], relation prediction [35], higher-order pattern
prediction [21, 25], temporal network modeling [42], recommender
systems [52], graph meta-learning [15], and subgraph matching [24,
26] and prediction [41]. Di�erent from canonical GNNs, SGRL ex-
tracts a subgraph patch for each training and test query and learns
the representation of the extracted patch for �nal prediction (See
Fig. 1b). For example, SEAL [51, 53] learns the representation of
a subgraph around a given node pair to predict the link between
them. This framework fundamentally overcomes the above three
limitations. First, subgraph extraction allows decoupling the con-
tributions made by a node to di�erent queries, which prevents in-
formation over-squashing. Second, subgraph patches can be paired
with distance-related features that favor prediction over a set of
nodes [21, 53]. Third, subgraph extraction disentangles model depth
and range of receptive �eld, which allows learning a rather non-
linear model with only relevant local subgraphs as input.

Despite their importance, the SGRL framework has not received
as much attention as the canonical GNN framework in the system
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Figure 1: A Toy Example of SGRL: the task is to predict whether
!" or !# is more likely to form a link. Ideally, if this comes from a
social network, !# is more likely linked because they share a com-
mon neighbor. However, canonical GNNs cannot tell such di!er-
ence since" and #share the same subtree structures resulting in the
same representation [44]. SGRL solves this problem by extracting
a subgraph patch around each queried node pair. Prediction based
on the subgraph representation provides much better performance
than canonical GNNs [51, 53].

research community. The underlying challenge comes from the
subgraph extraction step in SGRL, which can be rather irregular
and time-consuming. Speci�cally, SGRL requires to materialize
a subgraph patch for each query during training and inference.
Previous works of SGRL typically extract subgraphs o�ine for all
such queries [25, 51], but it is not scalable for large graphs due
to extensive memory need. Meanwhile, the online extraction [48]
is not an option as it requires considerable processing time. The
irregularity of subgraphs further makes it di�cult to e�ciently
handle the extraction process in both cases.

Here, we aim to �ll the gap by designing a novel computational
framework SUREL, to support SGRL over large graphs. SUREL
consists of a new system-friendly learning algorithm for SGRL and
a scalable system to support this algorithm. The crucial design of
SUREL is to reduce the overhead caused by the online subgraph
extraction, which all current SGRL approaches su�er from.

The key idea behind SUREL is to break (and down-sample) sub-
graphs into random walks of regular size that can be easily sam-
pled and, more importantly, reused among di�erent queries. To
compensate for the missing structural information after subgraph
decomposition, we introduce relative position encoding (RPE), an
intra-node distance feature that records the position of each node in
the sampled subgraph. Speci�cally, for each node ! in the network,
SUREL collects a certain number of random walk starting from ! .
Each node appearing in these walks uses its landing counts at each
step as the RPE vector. Overall, the set of collected walks paired
with RPEs can be viewed as a subgraph patch centered at ! . The
complexity of the above process is linear with the number of nodes,
and can be done in parallel and o�ine. For training and inference,
given a queried node set " , SUREL �rst groups the sampled walks
originated from all nodes in " . Then, it implicitly joins the subgraph
patches centered at each node in " by combining their node-level
RPEs into a query-level RPE for each node associated in the grouped
walks, which can also be executed in full parallel. Finally, SUREL
uses neural networks to learn the representation of the joined set
of walks attached with query-level RPEs for �nal prediction. Since
these walks are regular, the training process can be done quickly
by GPU. The system architecture of SUREL is illustrated in Fig. 2.

Our contributions can be summarized as follows: (1) A Novel
System-Friendly Algorithm. We propose the �rst scalable algo-
rithm for SGRL tasks by adopting a novel walk-based computation

framework. This framework uses regular data structures and al-
lows extreme system acceleration. (2) Dedicated System Support
(Open-source).We design SUREL to support the proposed algo-
rithm. It can rapidly sample walks, encode positional features, and
join them to represent multiple subgraphs in parallel. SUREL adopts
many system optimization techniques including parallelization,
memory management, load balancing, etc. (3) High Performance
and E"ciency. We evaluate SUREL on link/relation/motif three
prediction tasks over 6 real-world graphs of millions of nodes/edges.
SUREL signi�cantly outperform the current SGRL approaches, and
executes 10! faster in training and testing. Meanwhile, bene�ting
from the SGRL essence, SUREL outperforms canonical GNNs by a
great margin on prediction performance (almost 50%in all tasks).

2 PRELIMINARIES AND RELATED WORKS
In this section, we set up notations, formulate the SGRL problem
and review some related works.

2.1 Notations
De#nition 2.1 (Graph-structured data). Let G = (V ,E, # ) denote
an attributed graph, whereV = [$] and E " V!V are the node set
and the edge set respectively. # # R$! %denotes the node attributes
with %-dimension. Further, we use N# to represent the set of nodes
in the direct neighborhood of node &, i.e., N# = {! : (!, &) # E}.

De#nition 2.2 (' -hop Subgraph). Given a graph G and a node set
of interest " , let G&

' denote the ' -hop neighboring subgraph w.r.t
the set " . G&

' is the induced subgraph of G, of which the node set
V &

' includes the set " and all the nodes in G whose shortest path
distance to " is less than or equal to ' . Its edge set is a subset of E,
where each edge has both endpoints in its node set V &

' . The nodes
in V &

' still carry the original node attributes if G is attributed.

2.2 Graph Learning Problems and Background
Now, we formally formulate the GRL and SGRL problems.

De#nition 2.3 (Graph Representation Learning (GRL)). Given a
graph G and a queried set of nodes " , graph representation learning
aims to learn a mapping from the graph-structured data to some
predicting labels as ( (G, " ) $ ) , where the mapping ( (G, " ) may
re�ect structures and node attributes of G and their relation to " .

Next, we de�ne SGRL where for a particular query " , the pre-
dictions are made based on the local subgraph around " .

De#nition 2.4 (Subgraph-based GRL (SGRL)). Given a node set "
over an ambient graph G and a positive integer ' , SGRL is to learn
the mapping to some labels, which takes the ' -hop neighboring
subgraph of " in G as the input ( (G&

' , " ) $ ) . An SGRL task
typically is given some labeled node set queries {(" (, ) ()} )

(=1 for
training and other unlabeled node set queries {" ( } ) +*

(=) +1 for testing.

We list a few important examples of SGRL tasks. Link pre-
diction seeks to estimate the likelihood of a link between two
endpoints in a given graph. Additionally, it can be generalized to
predict the type of links, such as relation prediction for heteroge-
neous graphs. In this case, the set " corresponds to a pair of nodes.
The network scienti�c community has identi�ed the importance of
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leveraging the local induced subgraphs for link prediction [22]. For
example, the number of common friends (shown as neighbors in
a social network) implies how likely two individuals may become
friends in the future. Another generalized form of link prediction
is higher-order pattern prediction , where the set " consists of
three or more nodes. The goal is to predict whether the set of nodes
in " will foster a covered edge (termed hyperedge).

Graph neural networks (GNNs). Canonical GNNs associate
each node &with a vector representation h, which is learned and
updated by aggregating messages from &’s neighbors, as

h+
# = UPDATE

!
h+%1

# ,AGGREGATE
!
{h+%1

! |! # N#}
""

.

Here, UPDATE is implemented by neural networks while AGGRE-
GATE is a pooling operation invariant to the order of the neighbors.
By unfolding the neighborhood around each node, the computa-
tion graph to get each node representation forms a tree structure.
According to Def. 2.4, canonical GNNs seem also able to perform
SGRL by encoding the local subtree rooted at each node into a node
representation (See Fig. 1a). Nevertheless, by this way, each node
representation only separately re�ects the subgraph around each
node but cannot jointly represent the subgraph around multiple
nodes, which yields the problem in Fig. 1. However, the SGRL frame-
work considered in this work is able to learn the representation of
the joint subgraph around a queried node set.

2.3 Other Related Works
Without exception, previous works focus on improving the scal-
ability of canonical GNNs and their system support, but some of
their techniques inspire the design of SUREL.

To overcome the memory bottleneck of GPU when processing
large-scaled graphs, sub-sampling the graph structure is a widely
adopted strategy. GraphSAGE [13] and VR-GCN [5] use uniform
sampling schema and variance reduction technique respectively to
restrict the size of node neighbors; PIN-SAGE [46] exploits Person-
alized PageRank (PPR) scores to sample neighbors. FastGCN [4] and
ASGCN [16] perform independent layer-wise node sampling to al-
low neighborhood sharing. Cluster-GCN [7] and GraphSAINT [49]
study subgraph-based mini-batching approaches to reduce the size
of training graphs. Note that the subgraphs in our setting are sub-
stantially di�erent from theirs, since our subgraphs work as features
for queries while their subgraphs are a compensatory choice to
achieve better scalability.

Many works better the system support for GNNs. DGL [40] and
PyG [9] are designed for scalable single-machine GNN training.
Marius [27] is proposed to e�ciently learn large-scale graph em-
beddings on a single machine. There are several distributed systems
dedicated to GNNs: AliGraph [45] addresses the storage issue of
applying GNNs on massive industrial graphs; AGL [50] employs
a subgraph-based system for GRL; ROC [17] builds a multi-GPU
framework for deeper and larger GNN models; Dorylus [36] de-
signs a CPU-based distributed system for GNN training. G3 [23]
speedups GNN training via supporting parallel graph-structured
operations. Zhou et al. [55] uses feature dimension pruning to ac-
celerate large-scale GNN inference. However, all these systems
only support canonical GNNs so they all su�er from the intrinsic
modeling limitations of GNNs.
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Figure 2: The System Architecture of Subgraph-based Graph
Representation Learning Framework (SUREL).

3 THE ARCHITECTURE OF SUREL
In this section, we �rst give an overview of the SUREL framework
as shown in Fig. 2. Then, we focus on the design and the implemen-
tation of three modules: Walk Sampler & Relative Position Encoder
(Preprocessing), Walk-based Subgraph Storage, Query-based Sub-
graph Joining & Neural Encoding. At last, we elaborate an e�cient
training pipeline with Subgraph Query Mini-batching.

3.1 Overview
Existing SGRL frameworks that extract a subgraph per query do not
support e�cient training and inference. ' -hop subgraph extraction
faces the size “explosion” issue as many nodes have signi�cantly
large degrees in real-world networks. Moreover, subgraphs of dif-
ferent sizes cause workload �uctuation, hindering load balancing
and memory management.

Subgraph extraction can be replaced with e�cient walk-based
sampling, which sidesteps all above issues via regulating the num-
ber and the length of sampled walks. The number and the length of
these walks are small constants, so the space and time complexity
here is only linear w.r.t the number of nodes. Speci�cally, during
preprocessing, SUREL reduces the subgraph around each node in a
given graph to a set of random walks originated from it. To compen-
sate for the loss of structural information after breaking subgraphs
into walks, an intra-node distance feature termed relative positional
encoding (RPE) is proposed, which enables locating each node in
the sampled subgraph. The collected set of walks paired with its
RPEs is hosted in the walk-based subgraph storage, with a dedicated
data structure designed to support rapid and intensive access. The
preprocessing �ow is presented in the upper part of Fig. 2.

For training and testing, given a query (set of nodes), SUREL
employs subgraph joiningto implicitly construct a subgraph around
the entire query in full parallel. First, all the walks originated from
the queried node set are grouped. Then, the precomputed node-level
RPEs are joined into query-level RPEs. SUREL further adopts neural
networks to encode the grouped walks paired with query-level
RPEs, and makes �nal predictions based on the obtained subgraph
representation. A mini-batching strategy is designed to maximize
data reuse during training by exploiting the query overlaps.
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<latexit sha1_base64="j73pxlx+Krgd7RmEahCZ5CQtx8I=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoeJd9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QM6140J</latexit>

(1)

Random Walks

<latexit sha1_base64="SG6huJMQhK2NdyhASqR2T7WygGE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXg3oMePEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh/Llea9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDGn3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippXlS8q0r1vlqqlbM48nACp1AGD66hBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBPeGNCw==</latexit>

(3)

Relative Positional 
Encoding

RPE-ID

Pruning & Reindexing

Value

b�X a v

<latexit sha1_base64="cq+Qu2pOLKQSIh3t7Yz8D8SZsDs=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJSlGXBTcuK9gHpCFMppN26OTBPIQSoht/xY0LRdz6Fe78GydtFtp64MLhnHu59x4/YVRIy/o2SmvrG5tb5e3Kzu7e/oF5eNQTseKYdHHMYj7wkSCMRqQrqWRkkHCCQp+Rvj+9zv3+PeGCxtGdnCXEDdE4ogHFSGrJM0+GIZITjFg6yLxU1VX24DTrVt1yPbNqNaw54CqxC1IFBTqe+TUcxViFJJKYISEc20qkmyIuKWYkqwyVIAnCUzQmjqYRColw0/kLGTzXyggGMdcVSThXf0+kKBRiFvq6Mz9YLHu5+J/nKBlcuSmNEiVJhBeLAsWgjGGeBxxRTrBkM00Q5lTfCvEEcYSlTq2iQ7CXX14lvWbDvmi0blvVdq2IowxOwRmoARtcgja4AR3QBRg8gmfwCt6MJ+PFeDc+Fq0lo5g5Bn9gfP4AVN2Wpw==</latexit>

Xu,u [2, 0, 0]
<latexit sha1_base64="Erzn8pT819vmCts1CMYCXbeBX0c=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJSlGXBTcuK9gHpCFMppN26GQSZiZCCdGNv+LGhSJu/Qp3/o2TNgttPXDhcM693HuPHzMqlWV9G6W19Y3NrfJ2ZWd3b//APDzqySgRmHRxxCIx8JEkjHLSVVQxMogFQaHPSN+fXud+/54ISSN+p2YxcUM05jSgGCkteebJMERqghFLB5mXJnU/e3CserNuuZ5ZtRrWHHCV2AWpggIdz/wajiKchIQrzJCUjm3Fyk2RUBQzklWGiSQxwlM0Jo6mHIVEuun8hQyea2UEg0jo4grO1d8TKQqlnIW+7swPlsteLv7nOYkKrtyU8jhRhOPFoiBhUEUwzwOOqCBYsZkmCAuqb4V4ggTCSqdW0SHYyy+vkl6zYV80WretartWxFEGp+AM1IANLkEb3IAO6AIMHsEzeAVvxpPxYrwbH4vWklHMHIM/MD5/ADdilpQ=</latexit>

Xu,b [0, 2, 0]
<latexit sha1_base64="pBSkt1ubQlf2FaypXUjWz0xDz6I=">AAACAnicbVDLSsNAFL3xWesr6krcDBahi1ISKeqy4MZlBfuANITJdNIOnTyYmQglVDf+ihsXirj1K9z5N07aLLT1wIXDOfdy7z1+wplUlvVtrKyurW9slrbK2zu7e/vmwWFHxqkgtE1iHouejyXlLKJtxRSnvURQHPqcdv3xde5376mQLI7u1CShboiHEQsYwUpLnnncD7EaEcyz3tTL0hqePjhWzarZrmdWrLo1A1omdkEqUKDlmV/9QUzSkEaKcCylY1uJcjMsFCOcTsv9VNIEkzEeUkfTCIdUutnshSk608oABbHQFSk0U39PZDiUchL6ujM/WC56ufif56QquHIzFiWpohGZLwpSjlSM8jzQgAlKFJ9ogolg+lZERlhgonRqZR2CvfjyMumc1+2LeuO2UWlWizhKcAKnUAUbLqEJN9CCNhB4hGd4hTfjyXgx3o2PeeuKUcwcwR8Ynz80TJaS</latexit>

Xu,a [0, 0, 1]
<latexit sha1_base64="V5OGn6N5QF2dL2KH7mLvh/jssQw=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJpKjLghuXFewD0hAm00k7dDIJM5NCCdGNv+LGhSJu/Qp3/o2TNgttPXDhcM693HuPHzMqlWV9G6W19Y3NrfJ2ZWd3b//APDzqyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+f3OR+b0qEpBG/V7OYuCEacRpQjJSWPPNkECI1xoil/cxLk/o0e3CsulW3Xc+sWg1rDrhK7IJUQYG2Z34NhhFOQsIVZkhKx7Zi5aZIKIoZySqDRJIY4QkaEUdTjkIi3XT+QgbPtTKEQSR0cQXn6u+JFIVSzkJfd+YHy2UvF//znEQF125KeZwowvFiUZAwqCKY5wGHVBCs2EwThAXVt0I8RgJhpVOr6BDs5ZdXSfeiYV82mnfNaqtWxFEGp+AM1IANrkAL3II26AAMHsEzeAVvxpPxYrwbH4vWklHMHIM/MD5/AFTdlqc=</latexit>

Xu,v [0, 0, 1]

<latexit sha1_base64="V0MCirY6kRcsKzXZQO3sNTDe8p0=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovQRSlJKeqy4MZlBfuANITJdNIOnUzCzKRQQnTjr7hxoYhbv8Kdf+OkzUJbD1w4nHMv997jx4xKZVnfxtr6xubWdmmnvLu3f3BoHh13ZZQITDo4YpHo+0gSRjnpKKoY6ceCoNBnpOdPbnK/NyVC0ojfq1lM3BCNOA0oRkpLnnk6CJEaY8TSfual09o0e3AaNatmuZ5ZserWHHCV2AWpgAJtz/waDCOchIQrzJCUjm3Fyk2RUBQzkpUHiSQxwhM0Io6mHIVEuun8hQxeaGUIg0jo4grO1d8TKQqlnIW+7swPlsteLv7nOYkKrt2U8jhRhOPFoiBhUEUwzwMOqSBYsZkmCAuqb4V4jATCSqdW1iHYyy+vkm6jbl/Wm3fNSqtaxFECZ+AcVIENrkAL3II26AAMHsEzeAVvxpPxYrwbH4vWNaOYOQF/YHz+AFf5lqk=</latexit>

Xv,v [2, 0, 0]

<latexit sha1_base64="g8WxjRXBeQjYmi92T4+q6F9lL14=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJpKjLghuXFewD0hAm00k7dDIJM5NCCdGNv+LGhSJu/Qp3/o2TNgttPXDhcM693HuPHzMqlWV9G6W19Y3NrfJ2ZWd3b//APDzqyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+f3OR+b0qEpBG/V7OYuCEacRpQjJSWPPNkECI1xoil/cxLp3WUPThW3arbrmdWrYY1B1wldkGqoEDbM78GwwgnIeEKMySlY1uxclMkFMWMZJVBIkmM8ASNiKMpRyGRbjp/IYPnWhnCIBK6uIJz9fdEikIpZ6GvO/OD5bKXi/95TqKCazelPE4U4XixKEgYVBHM84BDKghWbKYJwoLqWyEeI4Gw0qlVdAj28surpHvRsC8bzbtmtVUr4iiDU3AGasAGV6AFbkEbdAAGj+AZvII348l4Md6Nj0VryShmjsEfGJ8/NduWkw==</latexit>

Xv,a [0, 0, 1]

<latexit sha1_base64="0n/K7IoWbRatnz5D5GvDmbaEJiM=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovQRSlJKeqy4MZlBfuANITJdNIOnUzCzKRQQnTjr7hxoYhbv8Kdf+OkzUJbD1w4nHMv997jx4xKZVnfxtr6xubWdmmnvLu3f3BoHh13ZZQITDo4YpHo+0gSRjnpKKoY6ceCoNBnpOdPbnK/NyVC0ojfq1lM3BCNOA0oRkpLnnk6CJEaY8TSfual05qfPThWrVGzXM+sWHVrDrhK7IJUQIG2Z34NhhFOQsIVZkhKx7Zi5aZIKIoZycqDRJIY4QkaEUdTjkIi3XT+QgYvtDKEQSR0cQXn6u+JFIVSzkJfd+YHy2UvF//znEQF125KeZwowvFiUZAwqCKY5wGHVBCs2EwThAXVt0I8RgJhpVMr6xDs5ZdXSbdRty/rzbtmpVUt4iiBM3AOqsAGV6AFbkEbdAAGj+AZvII348l4Md6Nj0XrmlHMnIA/MD5/ADjxlpU=</latexit>

Xv,b [0, 2, 0]

<latexit sha1_base64="pS3n/gmTOefwvvjYexDu3zjWoaE=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJpKjLghuXFewD0hAm00k7dDIJM5NCCdGNv+LGhSJu/Qp3/o2TNgttPXDhcM693HuPHzMqlWV9G6W19Y3NrfJ2ZWd3b//APDzqyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+f3OR+b0qEpBG/V7OYuCEacRpQjJSWPPNkECI1xoil/cxLp/Uke3CsulW3Xc+sWg1rDrhK7IJUQYG2Z34NhhFOQsIVZkhKx7Zi5aZIKIoZySqDRJIY4QkaEUdTjkIi3XT+QgbPtTKEQSR0cQXn6u+JFIVSzkJfd+YHy2UvF//znEQF125KeZwowvFiUZAwqCKY5wGHVBCs2EwThAXVt0I8RgJhpVOr6BDs5ZdXSfeiYV82mnfNaqtWxFEGp+AM1IANrkAL3II26AAMHsEzeAVvxpPxYrwbH4vWklHMHIM/MD5/AFTflqc=</latexit>

Xv,u [0, 0, 1]

<latexit sha1_base64="SlxtEcJt04SEIcQ/gjx+Pl6Nf4U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3BPUY8OIxonlAsoTZyWwyZHZ2mekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDv3209cGxGrR5wk3I/oUIlQMIpWeihXL/vFkltxFyDrxMtICTI0+sWv3iBmacQVMkmN6Xpugv6UahRM8lmhlxqeUDamQ961VNGIG3+6OHVGLqwyIGGsbSkkC/X3xJRGxkyiwHZGFEdm1ZuL/3ndFMMbfypUkiJXbLkoTCXBmMz/JgOhOUM5sYQyLeythI2opgxtOgUbgrf68jppVSveVaV2XyvVy1kceTiDcyiDB9dQhztoQBMYDOEZXuHNkc6L8+58LFtzTjZzCn/gfP4APFyNCg==</latexit>

(2)

<latexit sha1_base64="9ZxwAdYknmQRoueL0FD3qNY/lxQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoeJe9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QM5Uo0I</latexit>

(0)
<latexit sha1_base64="j73pxlx+Krgd7RmEahCZ5CQtx8I=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoeJd9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QM6140J</latexit>

(1)

<latexit sha1_base64="SG6huJMQhK2NdyhASqR2T7WygGE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXg3oMePEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh/Llea9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDGn3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippXlS8q0r1vlqqlbM48nACp1AGD66hBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBPeGNCw==</latexit>

(3)

Landing Counts

Dictionary

<latexit sha1_base64="j73pxlx+Krgd7RmEahCZ5CQtx8I=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoeJd9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QM6140J</latexit>

(1)

<latexit sha1_base64="KNc5am8wBwqtotbcE/qd0Q/8srU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6rLgpssK9gFtKJPppB06yYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVqxttMSaV7ATVcipi3UaDkvURzGgWSd4Ppfe53n7g2QsWPOEu4H9FxLELBKFqpP4goThiVWXM+rNbcursAWSdeQWpQoDWsfg1GiqURj5FJakzfcxP0M6pRMMnnlUFqeELZlI5539KYRtz42SLynFxYZURCpe2LkSzU3xsZjYyZRYGdzCOaVS8X//P6KYZ3fibiJEUes+VHYSoJKpLfT0ZCc4ZyZgllWtishE2opgxtSxVbgrd68jrpXNW9m/r1w3Wt4RZ1lOEMzuESPLiFBjShBW1goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AeHWRVQ==</latexit>

H

�X b a

�X b v

�Y b a

�Y b u v

Joined Walks 
for Query 

<latexit sha1_base64="3lzQlRDgF0KEesmfyR0J5pV4G/8=">AAAB+nicbVDLSgMxFM3UV62vqS7dBItQYSiZUtRlwY3LCvYB06Fk0kwbmskMSUYpYz/FjQtF3Pol7vwb03YW2nrgcg/n3EtuTpBwpjRC31ZhY3Nre6e4W9rbPzg8ssvHHRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0Gk5u5332gUrFY3OtpQv0IjwQLGcHaSAO7XPWQgxzXd7y66ci/GNgVVEMLwHXi5qQCcrQG9ld/GJM0okITjpXyXJRoP8NSM8LprNRPFU0wmeAR9QwVOKLKzxanz+C5UYYwjKUpoeFC/b2R4UipaRSYyQjrsVr15uJ/npfq8NrPmEhSTQVZPhSmHOoYznOAQyYp0XxqCCaSmVshGWOJiTZplUwI7uqX10mnXnMva427RqXp5HEUwSk4A1XggivQBLegBdqAgEfwDF7Bm/VkvVjv1sdytGDlOyfgD6zPH8EukQg=</latexit>

([0, 0, 1], [2, 0, 0])

<latexit sha1_base64="FTTs/rXGZ6HYg45a+9BKQ2NpE04=">AAAB9HicbVBNSwMxFHxbv2r9qnr0EiyCBym7UtRjwYvHCrYW2qW8TdM2NJtdk2yhLP0dXjwo4tUf481/Y7bdg7YOBIaZ93iTCWLBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpKFGVNGolItQPUTHDJmoYbwdqxYhgGgj0G49vMf5wwpXkkH8w0Zn6IQ8kHnKKxkt8N0YwoirQ16yW9csWtunOQVeLlpAI5Gr3yV7cf0SRk0lCBWnc8NzZ+ispwKtis1E00i5GOccg6lkoMmfbTeegZObNKnwwiZZ80ZK7+3kgx1HoaBnYyC6mXvUz8z+skZnDjp1zGiWGSLg4NEkFMRLIGSJ8rRo2YWoJUcZuV0BEqpMb2VLIleMtfXiWty6p3Va3d1yr1i7yOIpzAKZyDB9dQhztoQBMoPMEzvMKbM3FenHfnYzFacPKdY/gD5/MHIU6SRw==</latexit>

Vu

b

a

c

v

�G

u

<latexit sha1_base64="9pODOE3a96Fv6lo4eWlroyGmv9A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqDcLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vmjf9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV77Jaa9YqdTePowgncArn4MEV1OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/jVmMug==</latexit>

?
Query

<latexit sha1_base64="omBmvcGz8LfXqtzZDDyt0b1nRXQ=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSJ4KGVXinoRCl48tmA/YLeUbJptQ7PJkmQLZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88KEM21c99vZ2Nza3tkt7BX3Dw6Pjksnp20tU0Voi0guVTfEmnImaMsww2k3URTHIaedcPww9zsTqjST4slME9qL8VCwiBFsrOQ30T0KsrQyCWb9UtmtugugdeLlpAw5Gv3SVzCQJI2pMIRjrX3PTUwvw8owwumsGKSaJpiM8ZD6lgocU93LFifP0KVVBiiSypYwaKH+nshwrPU0Dm1njM1Ir3pz8T/PT01018uYSFJDBVkuilKOjETz/9GAKUoMn1qCiWL2VkRGWGFibEpFG4K3+vI6aV9XvZtqrVkr1yt5HAU4hwu4Ag9uoQ6P0IAWEJDwDK/w5hjnxXl3PpatG04+cwZ/4Hz+ABtpkHA=</latexit>

Q = { u, v}

Prepocessing
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Figure 3: An Illustration of Joining RPE into Query-level
RPEs with the Support of Walk-based Subgraph Storage.

3.2 Preprocessing - Walk Sampling & Encoding
The bottleneck of current SGRL frameworks is how to cheaply ac-
quire the ' -hop neighbors for each queried set of nodes. SUREL
proposes to decompose the ' -hop subgraph into a set of ' -length
walks that start from the queried set of nodes. As the walks are
regular, their storage and access are extremely e�cient. This also
resolves the computational problem caused by the long-tailed dis-
tribution of node degrees. More importantly, the collected walks
grouped by their starting nodes can be shared and reused among
di�erent queries. Our design decouples SGRL from redundant sub-
graph extraction and enables the reusability of preprocessed data.
We summarize the preprocessing routines with the support of hash-
indexed storage in Algorithm 1 and introduce the speci�cs next.

Walk Sampling. During preprocessing, SUREL samples * -many
' -step walks for every node in a given graph. As Fig. 3 (upper left)
shows, the sampled walks are grouped in a setW! , where ! denotes
the starting node of these walks. Walk sampling can be easily di-
vided into parallelizable pieces. The parallelization is implemented
based on NumPy and OpenMP framework in C.Moreover, to further
accelerate walk sampling, we use compressed sparse row (CSR) to
represent the graph. The CSR format consists of two arrays, idxptr
of length |V| + 1used to record the degrees of nodes, and indices
of size |E|, each row of which corresponds to the neighbor list
per node. CSR allows intensive fast access to the neighbors of a
node while keeping the memory cost low, which is vital for walk
sampling in large-scale graphs.

Relative Positional Encoding (RPE). Structural information
gets lost after breaking subgraphs into walks. SUREL compensates
such loss via RPE to locate the relative position of a node in each
sampled subgraph, which characterizes the structural contribution
of the node to its corresponding subgraph.

For each set of walksW! , we �rst establish a setV! that contains
distinct nodes appearing in W! . De�ne node-levelRPE X! : V! $

Algorithm 1: Data Preprocessing in SUREL
Input: Graph G; number of walks * ; step of walks '
Output: Associative array A , RPE array T

1 Initialize the array A and T , the dictionary H
2 for each node! # G do
3 Run * times ' -step random walks on G as a set of walk

W! # Z, ! & ;
4 Add the key V! = set(W! ) to H! ;
5 Calculate RPE for &+ # V! , save the value X!,- to T ,

and write its index in T as RPE-ID!,- back to H! (+);
6 Insert {! : (W! ,H! )} to A
7 end
8 Prune T and update the value of H by re-indexing.

R& +1 as follows: for each node + # V! , a vector X!,- # R& +1 is
assigned, where X!,- [,] is the landing counts of node + at position
, in all walks of W! . In SUREL, RPE can be computed on the �y as
walks get sampled, thus resulting in nearly zero extra computational
cost. The set of walks W! paired with the RPE X! essentially
characterize a sub-sampled subgraph around the node ! . Next, we
present a dedicated data structure to host W! and X! altogether.

3.3 Walk-based Subgraph Storage
It is easy to manage the collected set of walks due to its regularity.
An ' ' * -sized chunk is allocated to each set of walks, which assists
to speed up data fetching. How to organize node-level RPE presents
a real challenge because the cardinality of the set |V! | varies from
node to node. One naïve way to avoid such irregularity is to directly
scatter these RPEs back to nodes in previously collected walks. But,
this gives an ' ' * ' ( ' + 1) tensor, resulting in an unrealizable
memory need. Moreover, it loses track of node IDs in walks that
are needed for joining subgraphs later.

We use an associative array A to organize all walk-based sub-
graphs as shown in the upper part of Fig. 3. For each node ! # V ,
its corresponding entry in A is a node-level subgraph formed as
a tuple (W! ,H! ). Here, W! is a set of walks starting from ! , and
H! is a dictionary that maps the unique node set V! of W! to its
corresponding node-level RPE X! . The use of dictionary resolves
irregularities in V! mentioned above, while maintaining the con-
nection between node IDs and their RPEs. In addition, array T
is introduced to store RPE values centrally, rather than scattered
across dictionaries. As Fig. 3 (upper right) shows, the value ofH! (+)
is now replaced with the index of the RPE value X!,- stored in T
accordingly, noted as RPE-ID!,- . This design overall guarantees the
access of RPE in - (1) time.

The above A and H! are built on top of uthash’s macros 1, with
extended support for arbitrary insertions and deletions of key–value
pairs. It o�ers data access and search in - (1) time on average, which
is about as good as the direct address table but greatly reduces
the space wastage. In particular, it has no dependency or need
for communication between multiple hash queries, thus can be
pleasingly executed in parallel. Both A and H! are stored in RAM
on the CPU side. As we observed in Fig. 3, there are many repeated
RPE values. Once all nodes are sampled, the array T can be pruned
1https://troydhanson.github.io/uthash/
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to remove duplicates. RPE-IDs will be updated synchronously when
T is reindexed. For example, both node . and &have the RPE value
of [0,0,1] , whose index in T is (1) after pruning. Thus, both H! (. )
and H! (&) are assigned to the new RPE-ID as (1). The shape of T
is regular and its size is usually small after pruning, which can be
fully loaded in GPU. In practice, we found that pining RPEs in GPU
memory is critical, as it can signi�cantly reduce the communication
cost of moving data back and forth between RAM and SDRAM.

3.4 Query-based Subgraph Joining
The storage designed above records the downsampled subgraph
around each node. As SGRL is mostly useful for making predictions
over a set of nodes " , here we further illustrate how to get the
joined subgraph around all the nodes ! # " .

The idea is to concatenate all set of walks [ ...,W! , ...] for ! # " ,
since each set of walks W! can be viewed as a subgraph around ! .
Besides, each node + in the walks will be paired with a query-level
RPE X',- that characterizes the relative position of node + in the
joint subgraph around the queried set " . Speci�cally, X',- is de-
�ned by joining all RPEs X!,- for ! # " , i.e., X',- = ( ! #' X!,- (!
[ ...,X!,- , ...]) # R(& +1)! | ' |. There will be some ! # " such that
+ ! V! , for which X!,- is set to all zeros. Through this proce-
dure, the joined subgraph with query-level RPEs is sent to GPU for
representation learning and then model inference.

The data structure described in Sec. 3.3 enables a highly parallel
implementation of subgraph joining along with optimized memory
management. On the CPU side,X',- is not directly used to assemble
walks. Instead, we use a query-level RPE-ID that joins node-level
RPE indices in T , i.e. use RPE-ID',- = [ ...,RPE-ID!,- , ...] # R|' |

for ! # " , which reduces the memory cost from (' + 1) ' | " | to
|" |. For instance, in Fig. 3 (bottom right), X',! = ( [2,0,0], [0,0,1])
can be substituted by RPE-ID',! = (3,1), as their RPE values locate
at the entry (3) and (1) of T . As follows, SUREL pre-allocates an
array with the �xed-size [' ' * ' | " |, |" |], where ' ' * ' | " | is
the size of walks around " . Then, SUREL �lls the index array with
RPE-ID!,- by multithreads. Note that RPE-ID!,- can be rapidly
retrieved via the dictionary operation H! (+). Lastly, assembling
RPE values towalks is performed onGPU via the indexing operation
X!,- = T (RPE-ID!,- ), where T is pinned in GPU memory earlier.
SUREL incorporates a Python/C hybrid API for subgraph joining,
building on top of NumPy, PyTorch, OpenMP and uthash.

Some remarks can be made here. First, the above algorithm con-
tains some redundancy to compute the query-level RPE-ID for the
nodes that appear multiple times in the walks. In practice, we �nd
that about half of the nodes appear only once, thus doubling the
computation time at most. To avoid such redundancy, one can �rst
compute the set unionV' = ) ! #' V! , and then compute the query-
level RPE-ID by traversing all nodes in V' . However, parallel set
union is di�cult to implement e�ciently. When multithreading
is enabled, we observe a signi�cant increase in the e�ciency of
SUREL, as opposed to the union operation. Also, by dynamically
adjusting the number of threads, the workload between CPU and
GPU can be well balanced. Second, we have empirically found that
using RPE-ID instead of RPE to assemble walks provides an observ-
able performance boost (speed up by 2! or more), otherwise data
communication between CPU and GPU would the main bottleneck.

Algorithm 2: The Training Pipeline of SUREL
Input: A graph G, a set of training queries {(" (, ) ()} , batch

capacity / 1, batch size / 2
Output: A Neural Network for Neural Encoding NN(á)

1 Prepare the collection of set of walks W and RPEs X
2 for ,012= 1, . . . , '.+ _,012do
3 Initialize the set Q = * to track reached queries;
4 Randomly choose a seed-set of nodes øV from ) " ;
5 Run breath-�rst search to expand øV and Q until

| øV| = / 1 or |Q|= / 2;
6 Generate negative training queries (if not given) for a

mini-batch and put them into Q;
7 Perform subgraph joining for queries in Q;
8 Encode the concatenated walks by NN(á)to get the

subgraph representation 3' for each query;
9 Use backpropagation [31] to optimize model parameters.

10 end

3.5 Neural Encoding
After subgraph joining for each query, the obtained subgraph is
represented by a concatenated set of walks on which nodes are
paired with query-level RPEs (See Fig. 3). Next, we introduce neural
networks to encode these walks into a subgraph representation 3' .

Due to its regularity, any sequential models, e.g., MLP, CNN,
RNN, and transformers can be adopted for sampled walks. We test
RNN and MLP for neural encoding, both of which achieve similar
results. Next, we take the RNN as an example. We encode each walk
4 = (5 0,5 1, ..., 5& ) # W as enc(4 ) = RNN({ (

#
X'," !

$
}(=0,1,...,&),

where 5 ( ’s denote the node at step , in one sampled walk. Here,
( is to encode the query-level RPE. Node or edge attributes for
each step 5 + # 4 can be supported by attaching those attributes
after its RPE. To obtain the �nal subgraph representation of " , we
aggregate the encoding of all the associated walks through a mean
pooling, i.e., 3' = mean({enc(4 )|4 starts from some ! # " }) . In
the end, a two-layer classi�er is used to make prediction by taking
3' as input. In our experiments, all the tasks can be formulated as
binary classi�cation, and thus we adopt Binary Cross Entropy as
the loss function.

3.6 The Training and Serving Pipelines
SUREL organically incorporates the storage designed in Sec. 3.3
and the subgraph-joining operation described in Sec. 3.4 to achieve
e�cient training and model serving.

Subgraph queries " ’s are sets of nodes, which often come from a
common ambient on a large graph. There might be many overlaps
between di�erent queries and their ' -hop induced subgraphs. If
the queried subgraphs are known in prior, we may put these queries
with high node overlap into the same batch to improve data reuse.
Here, queries of each given task are assumed to have the same
size, e.g. |" | = 2 for link prediction. In practice, test queries are
usually given online while the training ones can be prepared in
advance. Hence, we propose to accelerate the training pipeline by
mini-batching the overlapping queries. Practitioners can choose the
appropriate pipeline according to the speci�c situation. Algorithm
2 summarizes the overall training procedure of SUREL.
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Table 1: Summary Statistics for Evaluation Datasets.

Dataset Type #Nodes #Edges

citation2 Homo. 2,927,963 30,561,187
collab Homo. 235,868 1,285,465
ppa Homo. 576,289 30,326,273

ogb-mag Hetero. Paper(P): 736,389
Author(A): 1,134,649

P-A: 7,145,660
P-P: 5,416,271

tags-math Higher. 1,629 91,685 (projected)
822,059 (hyperedges)

DBLP-
coauthor

Higher. 1,924,991 7,904,336 (projected)
3,700,067 (hyperedges)

Mini-batching for Training. We �rst randomly sample a seed-
set of nodes øV from the union of queried node sets ) " . Then, we
run breadth-�rst search (BFS) to expand the seed-set øV . Neighbor
fetching of the BFS here is based on the grouped queries instead
of the original graph: a neighbor of node ! is de�ned as the node
that shares at least one query with it. During BFS, the reached
queries will be added to a set Q. The expansion stops once the
size of either the seed-set øV or the mini-batch Q reaches some
pre-de�ned limits. Since the data structure for each query in SUREL
after subgraph joining is regular, it is easy to decide the size limits
of seed-set and mini-batch based on resource availability (i.e. GPU
memory). In practice, this BFS procedure improves reusability of
data within each mini-batch, and may signi�cantly decrease the
communication cost between CPU and GPU. If the training set only
contains positive queries (often in link/motif prediction tasks), we
design an e�cient sampling strategy for negative queries by the
same principle that randomly pairs them within the same batch.

4 EVALUATION
In this section, we aim to evaluate the following points:
¥ Regarding prediction performance, can SUREL outperform state-
of-the-art SGRL models? Can SUREL signi�cantly outperform
canonical GNNs and transductive graph embedding methods due
to the claimed bene�t of SGRL?

¥ Regarding runtime, can SUREL signi�cantly outperform state-of-
the-art SGRL models? Can SUREL achieve runtime performance
comparable to canonical GNNs? Previous SGRL models are typi-
cally much slower than canonical GNNs.

¥ How about the parameter sensitivity of SUREL? How do the
parameters ' and * impact the overall performance?

¥ How is the parallel design of SUREL performing and scaling?

4.1 Evaluation Setup
We conduct extensive experiments to evaluate the proposed frame-
work with three kinds of graphs (homogeneous, heterogeneous,
and higher-order homogeneous) on three corresponding types of
tasks, namely, link prediction, relation prediction and higher-order
pattern prediction. Homogeneous graphs are the graphs without
node/link types. Heterogeneous graphs include node/link types.
Higher-order graphs contain higher-order links that may connect
more than 2 nodes. The dataset statistics are summarized in Table
1, most of which are larger than the datasets used in [54, 55], not to
mention that our node-set prediction task is much more complex
than the node classi�cation task considered in the previous works.

Table 2: Comparison of SGRL Methods for Subgraph Sam-
pling. Suppose using - (|E|) many queries and 6 to denote
the average size of sampled subgraphs. The wall-clock time
is measured on citation2 test set with 7 = 16threads.

Methods SEAL (1-hop) [51, 53] DE-GNN [21] SUREL
Time Complexity - (6|E|) - (6|E|) - (&,

. á |V|)
Wall Time 36h > 1 month 26s

Open Graph Benchmark (OGB). We use three link prediction
and one relation prediction datasets [14]: ppa- a protein interaction
network, collab - a collaboration network, and citation2 - a
citation network; and one heterogeneous network ogb-mag, which
contains four types of nodes (paper, author, institution and �eld)
and their relations extracted from MAG [39].

Higher-order Graph Dataset. DBLP-coauthoris a temporal
higher-order network that records co-authorship of papers as times-
tamped higher-order links. tags-math contains sets of tags that
are applied to questions on the website math.stackexchange.com
as higher-order links. For the two higher-order graphs, SUREL
and all the baselines will treat them as standard graphs by project-
ing higher-order links into cliques. However, the training and test
queries are generated based on higher-order links detailed next.

Settings. For Link Prediction, we follow the data split as OGB
requires to isolating the validation and test links (queries) from the
graphs. For Relation Prediction, the relations of paper-author (P-A)
and paper-citation (P-P) are selected. The dataset is split based on
timestamps. 0.5% of existing edges of each target relation type are
selected from ogb-mag. For each paper, two authors/citations are
picked from its P-A/P-P relations respectively, one for validation
and the other for testing. The remaining links are used for training.
For Higher-order Pattern Prediction, we focus on predicting whether
two nodes will be connected to a third node concurrently via a
higher-order link in the future. Speci�cally, positive queries are
node triplets, where two nodes are linked before the timestamp 0
and the third node establishes connection to the pair via a higher-
order link after 0. The split ratio of positive node triplets is 60/20/20
for training/validation/testing. For Relation Predictionand Higher-
order Pattern Prediction, each positive query is paired with 1000
randomly sampled negative queries (except tags-math uses 100)
in testing. For fair comparison, all baselines are tested with the
same set of negative queries sampled individually for each dataset.
All experiments are run 10 times independently, and we report the
mean performance and standard deviations.

Baselines.We consider three classes of baselines. Graph Embed-
ding methodsfor transductive learning: Node2vec [11] and Deep-
Walk [30], which learns a single embedding for each node and
may su�er from the information over-squashing issue; Canonical
GNNs: GCN [19], GraphSAGE [13], GraphSAINT [49], Cluster-GCN
[7], Relational GCN (R-GCN) [32], Relation-aware Heterogeneous
Graph Neural Network (R-HGNN) [47]; SGRL models: SEAL[51, 53],
DE-GNN[21]. SEAL supports both o�ine and online subgraph ex-
traction per query. However, it takes SEAL 2+ hours and 102GB
RAM to o�ine extract 2% training subgraphs on citation2 . Thus,
we only keep the online setting for SEAL. DE-GNN only supports
o�ine subgraph extraction. Table 2 compares subgraph sampling
for di�erent SGRL methods. We adopt o�cial implementations of
above baselines with tuned parameters that match reported results.
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Table 3: Results for Link Prediction, Relation Prediction,
and Higher-order Pattern Prediction.

Models
citation2 collab ppa
MRR (%) Hits@50 (%) Hits@100 (%)

Node2vec 61.28±0.15 47.54±0.78 18.05±0.52
DeepWalk 84.47±0.04 49.08±0.93 27.80±1.71

GCN 84.74±0.21 44.75±1.07 18.67±1.32
SAGE 82.60±0.36 54.63±1.12 16.55±2.40
Cluster-GCN 80.04±0.25 44.02±1.37 3.56±0.40
GraphSAINT 79.85±0.40 53.12±0.52 3.83±1.33

SEAL 87.67±0.32 63.64±0.71 48.80±3.16
SUREL 89.74±0.18 63.34±0.52 53.23±1.03

Models
MAG(P-A) MAG(P-P) tags-math DBLP-coauthor
MRR (%) MRR (%) MRR (%) MRR (%)

GCN 39.43±0.29 57.43±0.30 51.64±0.27 37.95±2.59
SAGE 25.35±1.49 60.54±1.60 54.68±2.03 22.91±0.94
R-GCN 37.10±1.05 56.82±4.71 - -
R-HGNN 33.41±2.47 45.91±3.28 - -

DE-GNN - - 36.67±1.59 Timeout
SUREL 45.33±2.94 82.47±0.26 71.86±2.15 97.66±2.89

SUREL uses an 2-layer MLP for embeddings of RPEs and an 2-layer
RNN to encode query-level joined walks. The obtained subgraph
embeddings are fed into an MLP classi�er for �nal prediction. De-
fault training parameters are: learning rate lr=1e-3 with early
stopping of 5-epoch patience, dropout p=0.1, Adam [18] as the
optimizer, batch capacity / 1 = 1500, and batch size / 2 = 32. Hidden
dimension %and walk parameters *, ' are investigated in Sec. 4.4.

Metric. The evaluation metrics include Hits@K andMean Recip-
rocal Rank (MRR). Hit@K counts the percentage of positive samples
ranked at the top-K place against all the negative ones. MRR �rstly
calculates the inverse of the ranking of the �rst correct prediction
against the given number of paired negative samples, and then an
average is taken over the total queries.

Environment. We use a server with four Intel Xeon Gold 6248R
CPUs, 1TB DRAM, and eight NVIDIA RTX 6000 (24GB) GPUs.

4.2 Prediction Performance Analysis
Table 3 shows results of three prediction tasks. Apparently, for
these three link prediction benchmarks, the performance of SGRL
models is signi�cantly better than transductive graph embedding
models and canonical GNNs, particularly for the challenging tasks
over ppaand collab . Within SGRL models, SUREL sets two SOTA
results on ppaand citation2 , and gets comparable performance on
collab against SEAL, which validates the modeling e�ectiveness
of our proposed walk-based framework. For relation prediction and
higher-order pattern prediction, we observe a large gap (up to 60%)
between canonical GNNs and SUREL-based models, especially in
higher-order cases. This again demonstrates the inherent modeling
limitation of canonical GNNs to predict over a set of nodes. DE-GNN
su�ers from serious scalability issues when employing subgraph
extraction for higher-order pattern prediction. Our best attempt is
to deploy DE-GNN on tags-math by using 10% training samples,
while the other three graphs failed. DE-GNN spends more than 300
hours preprocessing just 5%training queries of DBLP-coauthor.

Table 4: Breakdown of Runtime, Memory Consumption for
Di!erent Models on citation2 , collab and DBLP-coauthor.
Training time is calculated if no better validation result is
observed in 3 consecutive epochs, which assumes the model
has converged. Full-batch training models need NVIDIA
A100 (48GB) GPUs, results of which are marked with *. Other
models take less time on A100 than on RTX 6000.

Models
Runtime (s) Memory (GB)

Prep. Train Inf. Total RAM SDRAM

ci
ta

ta
io

n2

GCN * 17 16,835 32 16,884 9.5 37.55
Cluster-GCN 197 2,663 82 2,942 18.3 14.07
GraphSAINT 140 3,845 86 4,071 16.9 14.77
SEAL (1-hop) 46 22,296 130,312 152,654 36.5 3.35
SUREL 31 2,096 7,959 10,086 15.2 4.50

co
lla

b

GCN 6 840 0.1 846 3.2 5.17
Cluster-GCN 8 649 0.2 666 3.4 5.29
GraphSAINT <1 6,746 0.2 6,747 3.2 6.58
SEAL (1-hop) 10 7,675 37 7,722 15.4 6.97
SUREL <1 1,720 8 1,728 3.6 5.57

D
B

LP GCN * - 153 95 248 8.0 25.80
SAGE * - 86 77 161 7.5 24.70
SUREL 10 430 1,667 2,107 8.6 8.61
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Figure 4: Performance Pro#ling of Training & Inference (Up:
Time-to-accuracy; Down: Inference Throughput).

4.3 Runtime and Memory Complexity Analysis
Table 4 reports the runtime, memory consumption comparison
on a single machine (using one GPU) between canonical GNNs
and SGRL models. SUREL o�ers a reasonable total runtime on
these benchmarks compared with canonical GNNs. Meanwhile, its
preprocessing overhead is negligible as showed in Table 4 under the
term ‘Prep.’, and the higher-order case can be e�ciently handled as
well. SEAL adopts online extraction, and thus the cost is not counted
in preprocessing, while its training su�ers from the computation
bottleneck. DE-GNN uses o�ine extraction, and it takes 15+ hours
and 98GB RAM to process training queries in tags-math, which is
obviously incapable of scaling to DBLP-coauthor(so not present
in Table 4). Overall, SUREL substantially accelerates the subgraph
extraction and makes it feasible for SGRL on large-scale graphs.
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Figure 5: Hyper-parameter Analysis: the number of walks * , the step of walks ' , and the hidden dimension %.
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Figure 6: Performance Scaling of SUREL (W alk Sampler and
Query-level RPE Joining) vs Di!erent Number of Threads.

In terms of memory management, SUREL achieves comparable
RAM usage to canonical GNNs, because the number of walks *
and the steps ' are small constants in practice. The extra memory
cost is linear in |V| , so the total memory cost is still dominated by
the original graph. However, SEAL induces much more RAM usage
as it extracts subgraphs of long-tail sizes, and its total memory cost
is often super-linear in |V| . Both SEAL and SUREL consume much
less SDRAM because they do not need GPU to load large adjacency
matrices and host node representations.

We further pro�le the training and inference performance, and
present it in Fig. 4. The upper half plots the time-to-accuracy com-
parison between canonical GNNs and SGRL models. Each dot in-
dicates one training epoch for full-batch GCN, SEAL and SUREL,
10 training epochs for Cluster-GCN and GraphSAINT. As it shows,
both SEAL and SUREL use 1-3 epochs to get good enough perfor-
mance, and each epoch of SUREL takes around 1/10 time of SEAL
on citation2 . The time per epoch of full-batch GCN is compara-
ble with SUREL, while Cluster-GCN and GraphSAINT are faster.
However, these models generally take longer time to converge to
even subpar performance. On ppa, the curve of SEAL is pretty oscil-
lating, leading to longer convergence. SUREL uses large * and ' to
achieve better and more stable performance on ppa, so the training
time per epoch is comparable with SEAL. The training curves of
canonical GNN baselines are not plotted for ppabecause of their
poor performance (See Table 3).

The bottom half of Fig. 4 provides the comparison of end-to-end
inference throughput between two classes of models. Canonical
GNNs o�er rapid inference, since they generate node representa-
tions as the intermediate computation results that are shared across
all queries. But as aforementioned, sharing node representations
may over-squash useful information and degenerate performance
as shown in Table 3. SEAL, as SGRL, achieves good prediction per-
formance but its inference is extremely slow, because of subgraph
extraction per query. SUREL fundamentally solves this bottleneck
by replacing the extraction with walk-based subgraph joining. It
is 4 %16! faster than SEAL on inference for link prediction, and
achieves even more speedup than DE-GNN in higher-order settings.

4.4 Signi#cant Hyperparameter Analysis
The number * , the step ' of walks and the hidden dimension %
e�ect scalability and accuracy of SUREL. To examine their impact,
we evaluate SUREL on citation2 , a large sparse graph, and collab ,
a medium dense graph, for di�erent values of ' , * , and %.

Prediction Performance. Fig. 5(a) and 5(d) show the predic-
tion results. As expected, the performance consistently increases
if we use a larger number of walks * . But for the step ' , it is not
always true that longer steps will guarantee better results, which
depends on the speci�cs of the dataset. For instance, in network
citation2 , to accurately predict the link between two papers, more
steps are needed as it would capture a larger group of papers which
share similar semantics. While for collab , the case is di�erent, as
deeper walks would include more noise for predicting collabora-
tions between two authors. In general, some small ' (2 + 5) and
* (50+ 400) ensure adequate performance. By adjusting ' and
* , we can achieve the trade-o� between accuracy and scalability,
none of which is achievable through other SGRL models. Moreover,
SUREL is insensitive to the hidden dimension as shown by Fig. 5(d).

Training and Inference Time Cost. As Figs. 5(b) and 5(c)
demonstrated, the time of walk sampling and subgraph joining
is nearly linear w.r.t. the total number of walks (' ' * ) under the
same number of threads (16 by default). Here, we do not regulate
* based on the degree of each node in a query, which may induce
certain duplication in sampled walks originated from the nodes
with small degrees. Using degree-adaptive * is promising to further
improve the scalability of SUREL while keeping good prediction
performance. We leave such investigation for future study.

4.5 Performance Scaling
To investigate the scaling performance of the parallel implemen-
tation, we examine the runtime of heavy operations in SUREL by
using di�erent numbers of threads. Fig. 6(a) shows the throughput
of walk sampler and query-level RPE joining on citation2 . The
runtime is also compared to the estimated runtime by Amdahl’s
law [10] shown in Fig. 6(b): walk sampling and RPE joining are in
good agreement with the expected speedup, thus implying well
parallelized implementation.

5 CONCLUSION
We propose a novel computational paradigm, SUREL for subgraph-
based representation learning on large-scale graphs. SUREL targets
predicting relations over set of nodes. It decouples graph struc-
tures into sets of walks to avoid irregularities in subgraphs and
enable reuse of intermediate results. It then applies walk-based
subgraph joining paired with relative positional encoding for repre-
sentation learning of queried node sets. Such design allows for full
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parallelization and signi�cantly improves model scalability. SUREL
incorporates the principle of algorithm and system co-design that
unlocks the full potential of learning on large-scale data with lim-
ited resources. To the best of our knowledge, this is the �rst work to
study subgraph-based representation learning from the perspective
of system scalability. Experiments also show that SUREL achieves
superior performance in both prediction and scalability on three
di�erent SGRL tasks over six large, real-world graph benchmarks.
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Table 5: Summary of Frequently Used Notations.
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A NOTATIONS
Frequently used symbols are summarized in Table 5.

B FURTHER ANALYSIS
Fig. 7 shows the degree distribution and the node size of subgraph
with respect to di�erent numbers of hops in real-world networks
collab and citation2 . The node size of subgraphs dramatically

Figure 7: Characteristics of Real-World Networks

increases when the number of hop ' , 2, because many nodes
have signi�cantly large degrees in real-world networks as Fig. 7
LEFT illustrated. This leads to the size “explosion” issue for cur-
rent SGRL models. Accordingly, most of SGRL models including
SEAL [51, 53] and DE-GNN [21] can only accommodate at most
1-hop neighbors over large networks to avoid the scalability crisis,
which in return compromises their performance. SUREL solves this
issue by breaking the subgraph into regular walks, which enables
it to reach up to ' -hop neighbors via ' -step random walks. The
long-hop neighbors give extra information, which is bene�cial for
improving the prediction performance.

C LIMITATIONS OF CANONICAL GNNS AND
MORE ILLUSTRATION OF THE
ALGORITHMIC INSIGHTS OF SUREL

Canonical GNNs are known to have several limitations, such as
limited expressive power [28, 44], feature oversmoothing [29], in-
formation over-squashing[1, 8] and noise contaminating with a
large receptive �eld [15, 48].

One of the biggest limitations is that canonical GNNs cannot
distinguish the nodes that can be mapped to each other under some
graph automorphism. For example, the nodes 5 and & in Fig. 1
satisfy this property, and canonical GNNs will associate them with
the same node representation. Another more practical example
from a food web is shown in Fig. 8. In fact, most large networks
do not have non-trivial automorphism, and such nodes are not
that common. However, the above issue of GNNs actually induces
a more severe concern: the node representations learnt by GNNs
cannot well capture the intra-node distance information, which is
crucial to predict over a set of nodes.

Another issue of canonical GNNs is to over-squash information
into a single node representation. Node representations can be
viewed as intermediate computation results that are often used
in several downstream tasks. However, a node representation, if
it carries the information that is suitable for one task, may carry
subpar information for another task.

The third issue of canonical GNNs is the entanglement of the
number of GNN layers and the range of the receptive �eld. In
practice, when more complex and non-linear functions are to be
approximated, one may want to add more layers to the neural
network. However, GNNs adding more layers will also enlarge the
receptive �eld that may introduce noise.

The last two issues of GNNs are demonstrated in the left column
of Fig. 9. SGRL methods can handle these two issues of GNNs in a
simple way as illustrated in the right column of Fig. 9.

Furthermore, to handle the challenge encountered in Fig. 1a,
Fig. 1b indicates SGRLmethods can be adopted, which is to consider
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Figure 8: A food web example shows two disconnected com-
ponents - the boreal forest [34] and the antarctic fauna [2].
The query here is which one is more likely the predator of
Pelagic Fish, Lynx or Orca? Canonical GNNs cannot solve
this query. Srinivasan and Ribeiro [33] explain this as the
failure of GNNs to establish the correlation between the
node representations.

the joint subgraph around the target nodes ({!, 5 } or {!, &} ) as a
whole. Subgraph extraction can bemathematically viewed as adding
an intra-node distance feature to each node8: suppose " = {!,5 } is
the queried node set; if the distances from8 to ! and5 are both less
than or equal to 1, 8will be selected. Such distance features can also
be used as extra node features directly attached to raw node features.
Li et al. [21] have proved the e�ectiveness of using intra-node
distance to better GNN expressive power. SUREL is able to capture
such intra-node distance by adopting relative positional encoding
(RPE). Lastly, we illustrate how SUREL is related to previous SGRL
approaches in Fig. 10.

D ADDITIONAL EXPERIMENTAL SETTINGS
D.1 More Details about the Datasets
The dataset statistics and experimental setup for evaluation are
provided in Table 6. We choose OGB datasets2 to evaluate our
framework and other baselines, since it comes with large, real-
world graphs (million of nodes/edges) for realistic applications (i.e.
network of academic, proteins). Moreover, it provides standard,
open-sourced evaluation metrics and tools for benchmarking.

Following the format of OGB, we design four prediction tasks
of relations and higher-order patterns, and construct the corre-
sponding datasets on heterogeneous graphs and hypergraphs3. The
original ogb-magonly contains features for ‘paper’-type nodes.
We add the node embedding provided by [47] as raw features for
the rest type of nodes in MAG(P-A)/(P-P). For these four tasks,
the model is evaluated by one positive query paired with certain
number of randomly sampled negative queries, as listed in Table
7 along with other dataset statistics. The customized dataset for
relation and higher-order pattern prediction is accessible via Box
at https://app.box.com/s/v9nszkai2gig13lm1o6q2ya82ap07gyb.

D.2 More Details about the Baselines
For link prediction and relation prediction, we select baselines from
the current OGB leaderboard 4 based on two main factors: scalabil-
ity and prediction performance. All the public models have code
released with a technical report. With additional veri�cation, we

2https://ogb.stanford.edu/docs/dataset_overview/
3https://www.cs.cornell.edu/~arb/data/
4https://ogb.stanford.edu/docs/leader_linkprop/

adopt the published numbers if available on the leaderboard. For the
rest, we benchmark the model using their o�cial implementation
and tuning parameters as listed below.
¥ Graph embedding : graph embedding models for transductive
learning such as Node2vec [11], DeepWalk5 [30]. As implicit
matrix factorization, it can be extensively optimized [27, 43] for
large-scale graphmining tasks. The obtained node representation
embeds the global position of target nodes in a given graph,
which potentially can be exploited for link prediction.

¥ GCN family : a graph auto-encoder model that using graph
convolution layers to learning node representations, including
GCN [19], GraphSAGE [13], and the derived models, such as
Cluster-GCN [7], GraphSAINT [49].

¥ R-GCN6 [32]: a relational GCN thatmodels heterogeneous graphs
with node/link types.

¥ R-HGNN7 [47]: a heterogeneous GNN that focuses on learning
relation-aware node representations with attention mechanism.

¥ SEAL8 [51]: apply GCN with double radius labeling tricks to
obtain subgraph-level readout for link prediction. SEAL reigns
in the top spots of OGB leaderboard on multiple tasks, thanks to
the expressiveness inherited from SGRL. The implementation we
tested is specially optimized for OGB datasets provided in [53].

¥ DE-GNN9 [21]: a provably more powerful SGRL that utilizes
distance features (i.e. shortest path distance, landing probability)
to assist GNNs in representing any set of nodes. DE-GNN can be
applied to tasks such as node classi�cation, link prediction and
higher-order cases, with great performance.
For graph embedding approaches, we �rst use these models

to generate node embeddings, and then train an MLP as the link
predictor with input of the Hadamard product between hidden
representations of two nodes. Then, as OGB guideline required, to
perform data splitting, tune the MLP over the validation set, and
test it through the benchmark evaluator.

All canonical GNN baselines 10 come with three message pass-
ing layers of 256 hidden dimensions, and a tuned dropout ratio
in {0,0.5} for full-batch training. Canonical GNN models com-
bine node embeddings in the queried set as the representations of
links/hyperedges, which are later fed into an MLP classi�er for �nal
prediction. Besides, they need to use full training data to generate
robust node representations. The hypergraph datasets do not come
with raw node features. Thus, canonical GNNs here use random
features as input for training along with other model parameters.
R-GCN and R-HGNN use relational GCNConvlayers that support
message passing with di�erent relation types between nodes. The
relation type of edges is used as the input beside node features.

SGRL-based models only use partial edges from the training set.
Both SEAL and DE-GNN extract 1-hop enclosing subgraphs for
training. SEAL applies three GCN layers of 32 hidden dimensions
plus a sortpooling and several 1D convolution layers to generate
readout of the target subgraphs for prediction. DE-GNN adopts
shortest path distance calculated from each extracted subgraph

5https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/deepwalk
6https://github.com/pyg-team/pytorch_geometric/blob/master/examples
7https://github.com/yule-BUAA/R-HGNN
8https://github.com/facebookresearch/SEAL_OGB
9https://github.com/snap-stanford/distance-encoding
10https://github.com/snap-stanford/ogb/tree/master/examples/linkproppred
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Figure 9: LEFT: Two Limitations of Canonical-GNN-based GRL; RIGHT: How to Solve Them by Using Subgraph-based GRL.

Table 6: Summary Statistics and Experimental Setup for Evaluation Datasets.

Dataset Type #Nodes #Edges Avg. Node Deg. Density Split Ratio Split Type Metric

citation2 Homo. 2,927,963 30,561,187 20.7 0.00036% 98/1/1 Time MRR
collab Homo. 235,868 1,285,465 8.2 0.0046% 92/4/4 Time Hits@50
ppa Homo. 576,289 30,326,273 73.7 0.018% 70/20/10 Throughput Hits@100

ogb-mag Hetero. Paper(P): 736,389
Author(A): 1,134,649

P-A: 7,145,660
P-P: 5,416,271 21.7 N/A 99/0.5/0.5 Time MRR

tags-math Higher. 1,629 91,685 (projected)
822,059 (hyperedges) N/A N/A 60/20/20 Time MRR

DBLP-coauthor Higher. 1,924,991 7,904,336 (projected)
3,700,067 (hyperedges) N/A N/A 60/20/20 Time MRR

Table 7: Dataset Statistics for Relation Prediction and
Higher-order Pattern Prediction.

Dataset Query Type #Train (Pos.) #Val./Test (Pos.) Pos./Neg.

MAG(P-A) relation 6,519,308 16,180 1:1000
MAG(P-P) relation 5,199,201 22,639 1:1000
tag-math higher-order 74,955 24,985 1:100
DBLP-coauthor higher-order 79,566 26,522 1:1000

as the input feature, and then employs two TAGConvlayers of 100
hidden dimensions to generate readout of the queried node sets.

D.3 Architecture and Hyperparameter
SUREL consists of a 2-layer MLP with ReLU activation for the em-
bedding of node RPEs and a 2-layer RNN to encode joint walks
obtained from queried subgraph joining. The hidden dimension of

both networks is set to 64. Lastly, the concatenated hidden represen-
tations of queried node sets are fed into an 2-layer MLP classi�er
to make �nal predictions.

For link and relation prediction, we follow the inductive setting
that only partial samples will be used for training. Over the training
graph, we randomly select 5% links as positive training queries,
each paired with 9-many negative samples (9 = 50by default).
We remove these links and use the remaining 95% links to collect
random walks and compute node RPEs via Algorithm 1. For higher-
order pattern prediction, we use the given graph before timestamp
0 to obtain walks and RPEs, and then optimize model parameters
by higher-order triplets provided in the training set.

The results reported in Table 3 are obtained through the combina-
tion of hyperparameters listed in Table 8. For the pro�ling of SUREL
in Table 4 and Fig. 4, we use the following combinations: citation2
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Figure 10: How is SUREL related to previous SGRL models? Previous SGRL models, such as SEAL [51] and DE-GNN [21], #rst
extract the neighboring subgraphs according to the queries, and then attach distance features to the nodes. In SUREL, all the
subgraphs are represented by sets of walks sampled from the corresponding subgraphs. Given a query, the joint subgraph is
represented by the concatenation of sets of walks. The query-level relative positional encoding (RPEs) is obtained by joining
node-level RPEs that represent the intra-node distance features.

Table 8: Hyperparameters Used for Benchmark SUREL.

Dataset #Steps' #Walks * #Neg. Samples9

citation2 4 200 50
collab 2 400 50
ppa 4 200 50
MAG (P-A) 3 200 10
MAG (P-P) 4 100 50
tags-math 3 100 10
DBLP-coauthor 3 100 10

with ' = 50, * = 4,9 = 20; collab with ' = 2, * = 200,9 = 20, as
relative small values of ' , * , and 9 already guarantee su�cient
good performance. The rest hyperparameters remain the same as
reported earlier.

D.4 Computation Complexity Analysis
We analyze the computation cost in the proposed framework SUREL
and identify three major parts:

Random Walks : the space complexity is - ('* |V| ), where |V|
denotes the size of node set of the input graph; the time complexity
is - ('* |V|/ 7), where 7 is the number of threads. Practically, the
number of steps ' generally lies in the range of 2 + 5.

Relative Positional Encoding : the space complexity for RPE
is - (' 2* |V| ) as there are at most ' á* many distinct nodes in

the set of walks originated from a single node. Meanwhile, the
space requirement can be further reduced to 1/10 after pruning and
remapping RPE via RPE-ID. RPE can be computed along with walk
sampling. Thus, the time complexity of RPE computation is still
- ('* |V|/ 7) by combining with random walks.

Subgraph Joining : for a query " , the time complexity is - (: á
'* |" |/7) for joining all associated set of walks in a queried sub-
graph. : is a scalar related to the size of " . In practice, |" | = 2 for
link prediction, |" | , 3 for higher-order pattern prediction.

D.5 Implementation Details
We implemented our framework on top of PyTorch, NumPy, and
OpenMP. uhashis adopted to serve light and high e�cient indexing
for RPEs associated with sampled walks. For better parallelization,
the computationally intensive part is written in C language with
bindings to support Python APIs, including walk sampler, RPE en-
coder, and subgraph joining operation. To reduce the overhead of
hybrid programming, we use RPE-IDs and native C/Numpy arrays
instead of Python objects to exchange results between API calls and
underlying C functions.We also provide PythonAPIs to support cus-
tomizing above-mentioned parallel operations. The SUREL frame-
work is open-source at https://github.com/Graph-COM/SUREL and
free for academic use under the BSD-2-Clause license.
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